Coarsening fronts

نویسنده

  • Arnd Scheel
چکیده

We characterize the spatial spreading of the coarsening process in the Allen-Cahn equation in terms of the propagation of a nonlinear modulated front. Unstable periodic patterns of the Allen-Cahn equation are invaded by a front, propagating in an oscillatory fashion, and leaving behind the homogeneous, stable equilibrium. During one cycle of the oscillatory propagation, two layers of the periodic pattern are annihilated. Galerkin approximations and Conley index for ill-posed spatial dynamics are used to show existence of modulated fronts for all parameter values. In the limit of small amplitude patterns or large wave speeds, we establish uniqueness and asymptotic stability of the modulated fronts. We show that the minimal speed of propagation can be characterized by a dichotomy depending on the existence of pulled fronts. Main tools here are an Evans function type construction for the infinite-dimensional ill-posed dynamics and an analysis of the complex dispersion relation based on Sturm-Liouville theory. Running head: Coarsening fronts Corresponding author: Arnd Scheel, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinodal decomposition and coarsening fronts in the Cahn-Hilliard equation

We study spinodal decomposition and coarsening when initiated by localized disturbances in the Cahn-Hilliard equation. Spatio-temporal dynamics are governed by multi-stage invasion fronts. The first front invades a spinodal unstable equilibrium and creates a spatially periodic unstable pattern. Secondary fronts invade this unstable pattern and create a coarser pattern in the wake. We give linea...

متن کامل

Macroscopic equations for pattern formation in mixtures of microtubules and motors

Inspired by patterns observed in mixtures of microtubules and molecular motors, we propose continuum equations for the evolution of motor density, and microtubule orientation. The chief ingredients are the transport of motors along tubules, and the alignment of tubules in the process. The macroscopic equations lead to aster and vortex patterns in qualitative agreement with experiments. While th...

متن کامل

Two-dimensional front dynamics and spatial solitons in a nonlinear optical system.

Two-dimensional fronts and coarsening dynamics with a t{1/2} power law are analyzed experimentally and theoretically in a nonlinear optical system of a sodium vapor cell with single-mirror feedback. Modifications of the t{1/2} power law are observed in the vicinity of a modulational instability leading to the formation of spatial solitons of different sizes. The experimental and numerical obser...

متن کامل

Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.

The nonlinear dynamics resulting from the interplay between diffusive and buoyancy-driven Rayleigh-Taylor (RT) instabilities of autocatalytic traveling fronts are analyzed numerically for fronts ascending or descending in the gravity field and for various values of the relevant parameters, the Rayleigh numbers R(a) and R(b) of the reactant A and autocatalytic product B, respectively, and the ra...

متن کامل

Pattern Formation through Genetic Drift at Expanding Population Fronts

We investigate the nature of genetic drift acting at the leading edge of range expansions, building on recent results in [Hallatschek et al., Proc. Natl. Acad. Sci., 104(50): 19926 19930 (2007)]. A well mixed population of two fluorescently labeled microbial species is grown in a circular geometry. As the population expands, a coarsening process driven by genetic drift gives rise to sectoring p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006